skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Darwish, Ahmad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Monitoring product temperature during lyophilization is critical, especially during the process development stage, as the final product may be jeopardized if its process temperature exceeds a threshold value. Also, in-situ temperature monitoring of the product gives the capability of creating an optimized closed-loop lyophilization process. While conventional thermocouples can track product temperature, they are invasive, limited to a single-point measurement, and can significantly alter the freezing and drying behavior of the product in the monitored vial. This work has developed a new methodology that combines non-invasive temperature monitoring and comprehensive modeling. It allows the accurate reconstruction of the complete temperature profile of the product inside the vial during the lyophilization process. The proposed methodology is experimentally validated by combining the sensors’ wirelessly collected data with the advanced multiphysics simulations. The flexible wireless multi-point temperature sensing probe is produced using micro-manufacturing techniques and attached outside the vial, allowing for accurate extraction of the product temperature. 
    more » « less